首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3256篇
  免费   126篇
  国内免费   246篇
  2023年   15篇
  2022年   27篇
  2021年   39篇
  2020年   38篇
  2019年   58篇
  2018年   37篇
  2017年   49篇
  2016年   48篇
  2015年   48篇
  2014年   81篇
  2013年   106篇
  2012年   53篇
  2011年   133篇
  2010年   75篇
  2009年   180篇
  2008年   196篇
  2007年   207篇
  2006年   177篇
  2005年   150篇
  2004年   158篇
  2003年   119篇
  2002年   70篇
  2001年   62篇
  2000年   64篇
  1999年   76篇
  1998年   82篇
  1997年   61篇
  1996年   59篇
  1995年   62篇
  1994年   72篇
  1993年   70篇
  1992年   72篇
  1991年   74篇
  1990年   61篇
  1989年   53篇
  1988年   60篇
  1987年   74篇
  1986年   102篇
  1985年   76篇
  1984年   90篇
  1983年   34篇
  1982年   63篇
  1981年   54篇
  1980年   52篇
  1979年   43篇
  1978年   9篇
  1977年   16篇
  1976年   12篇
  1975年   2篇
  1974年   4篇
排序方式: 共有3628条查询结果,搜索用时 171 毫秒
31.
Abstract

Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO?) and nitrogen dioxide (?NO2). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO2?) to ?NO2 in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.  相似文献   
32.
Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.  相似文献   
33.
Synchronously growing cells of nitrogen-fixing Synechococcus sp. Miami BG 043511 were harvested periodically and the capability for hydrogen photoproduction in closed vessels was measured under hydrogen production conditions. The capability for hydrogen photoproduction in cells was correlated with that of cellular carbohydrate content. Cells with a high carbohydrate content exhibited a high capacity for hydrogen production and those with low carbohydrate content exhibited low capacity for hydrogen production. Nitrogenase activity at the onset of incubation did not coincide with a capability for the cells to produce hydrogen during the subsequent incubation period. Interestingly, when cells with a high capacity for hydrogen photoaccumulation were incubated, alternate periods of hydrogen and oxygen accumulation were observed at 12 hour intervals. About 0.5 ml of hydrogen per ml of cell suspension was accumulated in flasks during the initial 12-h incubation period. These observations indicate that the use of synchronous culture can be one of the ways of provide materials suitable not only for basic studies but also for applied aspects of hydrogen photoproduction.  相似文献   
34.
Abstract. Considerable losses and degradation of heathlands (in moorlands and lowlands) have been reported across Europe, with Calluna vulgaris (heather) being replaced by other species, often grasses. Increasing atmospheric nitrogen deposition and overgrazing have been suggested as the driving factors behind this change. This possibility was investigated in a study of the interacting effects of nutrient inputs and grazing on heather and three grass species (Nardus stricta, Deschampsia cespitosa and D. flexuosa) in the field, on a moorland in northeastern Scotland. In addition, the interacting effects of increasing nutrients and Calluna canopy height on N. stricta and D. cespitosa were studied using turves in an outdoor experimental area. In the field, fencing had a larger effect than fertilizer on the growth of all species, except for N. stricta, the species most unpalatable to herbivores. Fencing led to an increase in the height of the Calluna canopy, which may reduce light availability for the grasses. In the turf experiment, the height of the Calluna canopy affected the diameter of the grass tussocks and percentage of green matter (i.e. live leaf material), with plants under the more closed Calluna canopies being smaller. This study suggests that the slow‐growing, evergreen Calluna is a more effective competitor than the faster growing grasses when it has a tall, intact canopy, even at increased levels of nutrient supply. However, overgrazing promotes gap formation in the Calluna canopy, providing an opportunity for grasses to take advantage of increased nutrients. Thus the conservation of heather moorlands requires an understanding of the grazing level which allows Calluna to maintain sufficient canopy structure to outcompete grasses for light.  相似文献   
35.
Summary Tannin, cell wall, and nitrogen composition of green foliage and needle litter of similar-aged Douglas-fir (Pseudotsuga menziesii Mirb. Franco) from two stands differing in density and crown closure were compared. Trees in the closed-canopy stand had a lower basal area growth rate than those in the open-canopy stand. Stands did not differ in wood basal area/ha or forest floor C/N ratios, but the closed-canopy stand had a significantly larger accumulation of forest floor biomass and significantly higher levels of field-extractable nitrogen and nitrogen mineralization rates. Green foliage from trees in the closed-canopy stand had significantly lower nitrogen, astringency, and lignin contents, but higher cellulose concentration than trees in the open-canopy stand. These trends, inconsistent with the inverse relationship often observed between nitrogen and polyphenol contents of foliage, may result from differences in relative resource availability in the two stands. In contrast to green foliage, needle litter from the two stands had comparable contents of nitrogen, cellulose, and lignin, but astringency was significantly higher in litter from the closed-canopy stand. It is suggested that, within the constraints imposed by site conditions, evergreens may alter the tannin composition of senescing foliage, potentially affecting herbivory and decomposition differently.  相似文献   
36.
The nitrogen (N) cycle is essentially 'leaky'. The losses of small amounts of nitrate to waters and of ammonia and nitrous oxide to the atmosphere are a part of the global biogeo-chemical N cycle. However, intensive agricultural production, industry and vehicle use have more than doubled the amount of 'reactive' N in the environment, resulting in eutrophication, ecosystem change and health concerns. Research has identified agricultural practices that cause large losses of N and, in some cases, developed solutions. This paper discusses the problems of maintaining productivity while reducing N losses, compares conventional with low input (integrated) and organic farming systems, and discusses wider options. It also looks at the need to integrate studies on N with other environmental impacts, set in the context of the whole farm system, to provide truly sustainable agricultural systems.  相似文献   
37.
Summary Nodule biomass and yearly C2H2 reduction rates are reported forInga jinicuil, a leguminous tree used for shade in Mexican coffee plantations. Annual fixation by this species approximates 35 kg ha–1; which, when compared to nitrogen additions from fertilizers, represents an important nitrogen input to the coffee ecosystem.  相似文献   
38.
Summary The combination of using15N for determining the amount of nitrogen fixed by a legume crop in field experiments and the labelling of only one treatment at a time in each treatment combination is shown to be conceptually and experimentally valid for determining the effect of cultural practices on the amount of nitrogen fixed by a legume crop.  相似文献   
39.
Abstract. The decline of deciduous woodland populations of Anemone hepatica L. in southern Sweden is documented and possible causes are discussed. The study was based on (1) re‐investigations of 6.25 km2 grid‐squares first studied in 1938–1970, (2) distribution of A. hepatica in woodland sites with well‐known soil chemical properties and (3) a detailed study over 12 consecutive years into the relationships between biological characteristics of the species (number of individuals, vegetative development, flowering frequency) and environmental variables (temperature, precipitation), soil chemistry and time. There was a close relationship between soil acidity (pH, solubility of Al3+) and both distribution and biological characteristics. The biological variables declined significantly over time but were not related to climatic variability. Increasing soil acidity and Al3+ solubility are concluded to be the main factors responsible for the decline of A. hepatica in S. Swedish deciduous woodlands.  相似文献   
40.
Summary The mechanism of higher grain production of wheat (Triticum aestivum L.) by four tillage methods was explored on a sandy calcareous soil of Sahl-Al Jafara, Libya, during the year 1976–77. Tillage methods increased grain yield and dry matter weight at the boot stage in the order of no-tillage<rotovator=disc plough < subsoiler. Rotovation to 15 cm and disc ploughing to 25 cm depth enhanced grain production mainly by eliminating weed competition. In both the cases, roots penetrated < 25 cm where plough-pan existed.Further yield increases by 50 cm deep subsoiling seems to be mainly explained by N and Cu rise in plants from their marginal to optimum levels and by reduction of Mn deficiency in plant shoots. Penetration of roots beyond the 25 cm plough-pan apparently resulted in higher absorption of these nutrients from leached or native soil supplies. Subsoiling also resulted in greater Zn concentration in plant shoots which, under marginal to deficient conditions, will also increase grain production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号